Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 334: 122058, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553243

RESUMO

Global public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis. In this article, we present a unique medication delivery system (MCRUA) that selectively targets platelets and releases drugs by stimulation from the thrombus' microenvironment. The thrombolytic enzyme urokinase-type plasminogen-activator (uPA) and the anti-inflammatory medication Aspirin (acetylsalicylic acid, ASA) are both loaded onto pH-sensitive CaCO3/cyclodextrin crosslinking metal-organic frameworks (MC) that make up the MCRUA system. c(RGD) is functionalized on the surface of MC, which is functionalized by RGD to an esterification reaction. Additionally, the thrombus site's acidic microenvironment causes MCRUA to disintegrate to release uPA for thrombolysis and aiding in vessel recanalization. Moreover, cyclodextrin-encapsulated ASA enables the treatment of the inflammatory environment within the thrombus, enhancing the antiplatelet aggregation effects and promoting cooperative thrombolysis therapy. When used for thrombotic disorders, our drug delivery system (MCRUA) promotes thrombolysis, suppresses rethrombosis, and enhances biosafety with fewer hemorrhagic side effects.


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , Trombose , Humanos , Terapia Trombolítica , Ciclodextrinas/uso terapêutico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Trombose/tratamento farmacológico , Aspirina/farmacologia , Oligopeptídeos
2.
Carbohydr Polym ; 328: 121703, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220339

RESUMO

Arterial thrombosis is a critical thrombotic disease that poses a significant threat to human health. However, the existing clinical treatment of arterial thrombosis lacks effective targeting and precise drug release capability. In this study, we developed a system for targeted delivery and on-demand release in arterial thrombosis treatment. The carrier was constructed using chitosan (CS) and fucoidan (Fu) through layer-by-layer assembly, with subsequent surface modification using cRGD peptide. Upon encapsulation of urokinase-type plasminogen activator (uPA), the resulting therapeutic drug delivery system, uPA-CS/Fu@cRGD, demonstrated dual-targeting abilities towards P-selectin and αIIbß3, as well as pH and platelet-responsive release properties. Importantly, we have demonstrated that the dual targeting effect exhibits higher targeting efficiency at shear rates simulating thrombosed arterial conditions (1800 s-1) compared to single targeting for the first time. In the mouse common iliac artery model, uPA-CS/Fu@cRGD exhibited great thrombolytic capability while promoting the down-regulation of coagulation factors (FXa and PAI-1) and inflammatory factors (TNF-α and IL-6), thus improving the thrombus microenvironment and exerting potential in preventing re-occlusion. Our dual-target and dual-responsive, fucoidan-based macrovesicle represent a promising platform for advanced drug target delivery applications, with potential to prevent coagulation tendencies as well as improving thrombolytic and reducing the risk of re-occlusion.


Assuntos
Fibrinolíticos , Polissacarídeos , Trombose , Camundongos , Animais , Humanos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Fibrinolíticos/química , Fibrinólise , Trombose/tratamento farmacológico , Terapia Trombolítica/métodos
3.
ACS Biomater Sci Eng ; 7(10): 4809-4818, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558912

RESUMO

As a potential anticancer agent, azurin has attracted extensive attraction among chemists, physicists, and material scientists. Its structural and unfolding/folding information has been partially understood, but some detailed information, such as the difference in the unfolding processes between apo-azurin and holo-azurin, the mechanical stability, and the role of the copper cluster in its stability, has not been addressed adequately, especially at the single-molecule level. Here, we employed AFM-based single-molecule force spectroscopy to investigate the unfolding process of azurin in the apo and holo forms under an external force. The results indicated that the unfolding processes of apo-azurin and holo-azurin are different, and holo-azurin requires a stronger force to unfold than does apo-azurin. The copper cluster exhibited a more significant impact on the stability and the folding process of holo-azurin: the copper cluster was completely broken, and the copper ion left the unfolded azurin during the unfolding process of azurin. We suspected that the presence of the disulfide bond in azurin made the unfolding of the copper cluster different from that in pseudoazurin, which is also a type I copper protein like azurin. Rarely reported in previous studies, the mechanical strength of the Cu-N(His) bond of the copper cluster was obtained in this study, which is weaker than that of most metal-S(Cys) bonds but higher than that of the Fe-N(His) bond. Altogether, our results offer a possible new scenario for azurin to widely extend its anticancer activity.


Assuntos
Azurina , Azurina/metabolismo , Cobre , Metais , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...